Algebraic Geometry Mid Term

February 22 2024

This exam is of **30 marks** and is **3 hours long**. Please **read all the questions carefully**. Please feel free to use whatever theorems you have learned in class after stating them clearly.

1. Let $f \in k[X, Y]$.

$$f = a + bX + cY + dX^2 + eXY + fY^2 + gX^3 + \cdots$$

and let C = V(f) in \mathbb{A}_k^2 . Write down conditions under which

1.
$$P = (0,0) \in C$$
 (1)

2. The tangent line to C at P is
$$y = 0$$
. (2)

3. *P* is an inflection point of *C* with
$$y = 0$$
 as the tangent line (2)

4.
$$P$$
 is a singular point of C . (2)

2. Let k be any field.

- Prove that any algebraic set in \mathbb{A}^1_k is either the whole of \mathbb{A}^1_k or a finite set of points. (2)
- Let f and g be irreducible elements of k[X,Y] such that f and g are not multiples of each other. Prove that V(f,g) is finite. (3)
- Prove that any proper algebraic subset of \mathbb{A}_k^2 is a finite union of points and curves. (2)

- 3. Let $C: Y^3 = X^4 + X^3 \subset \mathbb{A}^2$.
 - Show that $(X, Y) \to X/Y$ defines a rational map $\phi : C \dashrightarrow \mathbb{P}^1$ and its inverse is a polynomial $\psi : \mathbb{A}^1 \to C$. (2)
 - Show that ψ restricts to an isomorphism

$$\mathbb{A}^1 - \{3 \text{ points}\} \simeq C - \{(0,0)\}\$$

- Are these two curves birational?
- 4. Recall that the Segre embedding is the map

$$\sigma_{m,n}: \mathbb{P}^n \times \mathbb{P}^m \longrightarrow S_{n,m} \subset \mathbb{P}^{(m+1)(n+1)-1}$$

obtained by sending $X_i, Y_j \to X_i Y_j$

• Show that the image of $\sigma_{1,1}$ is the Quadric surface

$$S_{1,1} = Q : V(X_0 X_3 - X_1 X_2) \subset \mathbb{P}^2$$
(2)

(2)

(1)

- Show that you can find disjoint lines in Q and they have infinitely many lines in Q transversal to them. (2)
- Use that to show that $\mathbb{P}^1 \times \mathbb{P}^1$ is not isomorphic to \mathbb{P}^2 . (2)
- Show that if S is a cubic surface in \mathbb{P}^3 with 4 disjoint lines lying on a quadric surface Q then $Q \subset S$. (5)