Algebraic Geometry Mid Term

February 222024

This exam is of $\mathbf{3 0}$ marks and is $\mathbf{3}$ hours long. Please read all the questions carefully. Please feel free to use whatever theorems you have learned in class after stating them clearly.

1. Let $f \in k[X, Y]$.

$$
f=a+b X+c Y+d X^{2}+e X Y+f Y^{2}+g X^{3}+\cdots
$$

and let $C=V(f)$ in \mathbb{A}_{k}^{2}. Write down conditions under which

1. $P=(0,0) \in C$
2. The tangent line to C at P is $y=0$.
3. P is an inflection point of C with $y=0$ as the tangent line
4. P is a singular point of C.
5. Let k be any field.

- Prove that any algebraic set in \mathbb{A}_{k}^{1} is either the whole of \mathbb{A}_{k}^{1} or a finite set of points. (2)
- Let f and g be irreducible elements of $k[X, Y]$ such that f and g are not multiples of each other. Prove that $V(f, g)$ is finite.
- Prove that any proper algebraic subset of \mathbb{A}_{k}^{2} is a finite union of points and curves. (2)

3. Let $C: Y^{3}=X^{4}+X^{3} \subset \mathbb{A}^{2}$.

- Show that $(X, Y) \rightarrow X / Y$ defines a rational map $\phi: C \rightarrow \mathbb{P}^{1}$ and its inverse is a polynomial $\psi: \mathbb{A}^{1} \rightarrow C$.
- Show that ψ restricts to an isomorphism

$$
\begin{equation*}
\mathbb{A}^{1}-\{3 \text { points }\} \simeq C-\{(0,0)\} \tag{2}
\end{equation*}
$$

- Are these two curves birational?

4. Recall that the Segre embedding is the map

$$
\sigma_{m, n}: \mathbb{P}^{n} \times \mathbb{P}^{m} \longrightarrow S_{n, m} \subset \mathbb{P}^{(m+1)(n+1)-1}
$$

obtained by sending $X_{i}, Y_{j} \rightarrow X_{i} Y_{j}$

- Show that the image of $\sigma_{1,1}$ is the Quadric surface

$$
\begin{equation*}
S_{1,1}=Q: V\left(X_{0} X_{3}-X_{1} X_{2}\right) \subset \mathbb{P}^{2} \tag{2}
\end{equation*}
$$

- Show that you can find disjoint lines in Q and they have infinitely many lines in Q transversal to them.
- Use that to show that $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is not isomorphic to \mathbb{P}^{2}.
- Show that if S is a cubic surface in \mathbb{P}^{3} with 4 disjoint lines lying on a quadric surface Q then $Q \subset S$.

